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The proper corrections for non-parallel flow to the eigenvalues for small dis- 
turbances on a nearly parallel shear flow have been determined through a per- 
turbation about the parallel flow solutions. The resulting shifts in the neutral 
stability curves have been calculated for the Blasius boundary layer, for the 
two-dimensional jet, and for the two-dimensional flat-plate wake. 

1. Introduction 
Linear stability analyses of shear flows usually treat the basic flow as a quasi- 

parallel flow. However, most flows are not truly parallel, and the effect of the 
parallel assumption on the analyses has not been adequately investigated. One 
approach (e.g. Cheng 1953) has been to treat the basic flow as homogeneous in 
the streamwise direction, but to include a cross-flow component in the basic 
flow. This ad hoe approach is not very satisfying: commenting on it, Tatsumi & 
Kakutani (1958) remarked, ‘To treaf the stability problem of the non-parallel 
flow in a more satisfactory manner seems to be beyond the scope of the existing 
theory of hydrodynamical stability’. Lanchon & Eckhaus (1964) examined the 
effect of non-parallel flow using a formal expansion, and then studied the asymp- 
totic (high Reynolds number) solutions. They found that the quasi-parallel 
treatment is a proper first approximation for boundary-layer flows, but that, 
for the more rapidly spreading jet flow, the non-parallel feature must be in- 
cluded in the ‘viscous’ solutions. They presented no quantitative results. KO & 
Lessen (1969) used an ad hoc argument to add an extra term to the wave- 
number to make a non-parallel correction for the jet flow. Barry & Ross (1970) 
studied more formally the effect of increasing thickness on stability, using 
a modified Orr-Sommerfeld equation (the argument by which their equation was 
obtained is incorrect, as will be discussed later). 

It is the purpose of the present work to present a proper formal expansion 
for the linear stability problem for non-parallel flows, and to obtain quantitative 
results therefrom. The analysis involves a systematic perturbation about the 
parallel flow solution, and hence provides a rational basis for correcting for 
weakly non-parallel effects. 

t Present address: Department of Oceanography, University of Washington, Seattle 
Washington. 
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2. Analysis 
We treat incompressible fluid flow with constant viscosity, here limiting 

ourselves to two-dimensional disturbances. For such flows, the motion is de- 
scribed by the vorticity equation (Batchelor 1967) 

1 
Q z $ ~ + @ U Q 2 $ x - ~ x Q z ~ 2 / - - Q 4 ~  R = 0. (2.1) 

Here the stream function $ is defined by 

u = $ 2 / ,  v=-?hx7 (2 .2)  

where u and v are the velocity components in the streamwise (x) and cross-stream 
(y) directions. All quantities are presumed to be normalized on suitable reference 
length and velocity scales &r and ur, respectively, and R is the Reynolds number 
based on these scales, R = u,.&,/v. Let $(x, y) represent the stream function of the 
basic flow field, and @'(x, y, t )  represent the stream function for the disturbance 
field. Then, setting @ = $ + $', using the fact that $ satisfies (2. I), and neglec- 
ting second-order terms in $', (2 .1 )  yields the linearized disturbance equation 
for yY, 

1 
QZ$i-t $UVz@A + $hQ2$x - $xQ2$I - z/fjCQ2$u - 2 V4$' = 0. (2 .3)  

The boundary conditions are of the form 

@; = @' U = 0 at solid boundaries, ( 2 . 4 ~ )  

$' --f 0 moving outward in a uniform flow. (2 .46)  

Since the coefficients are independent of time, we may seek normal-mode solu- 
tions $' proportional to exp {iwt}. The eigenvalue w is of primary interest, with 
the stability question resting on the sign of wi. 

Let us assume that 3 varies ' slowly ' with x, so that a Taylor series about some 
point xo will provide a good representation of $ in the neighbourhood of xo. 
Then, we presume that we may write this expansion in the form 

- 
@ = $o(Y) +E$l(Y) E + O ( E ) *  (2 .5)  

Here 

The small parameter E will depend on the flow under study: e.g. for the Blasius 
boundary-layer flow, e may be taken as 1/R = l/(xoUm/v)~ and the terms O ( E )  

are in fact 0(e21n~).  
In the expansions that follow we shall treat E and R as independent parameters. 

However, in some cases they will in fact be related. By treating them as in- 
dependent we are in effect solving the problem in the E ,  R plane, where in reality 
we need only to solve the problem on a line. The real solution is therefore con- 
tained in the family of fictious extensions over all E ,  R. 

It is particularly important to retain the viscous term in the first approxima- 
tion to (2 .3 ) .  Although it appears to be 0(1/R) smaller than the inertial terms, 
it is known to be important near the critical layer (Lin 1955) and near the wall. 
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Barry & Ross (1970) proposed a modified first approximation based on in- 
clusion of some of the terms involving $z in (2.3). For Blasius flow, $% = O( l / R ) ;  
hence they argued that, if viscous terms are retained, so should the $% terms. 
However, the viscous terms are only important near the critical layer, in a region 
of thickness O(R-4) (Lin 1955). In  this region the viscous terms are actually 
O(R+$, since a/ay = O(R4); thus $zVz$i is O( l ) ,  and should in fact be neglected 
in the first approximation. For such flows, the Pz may be dropped for the first 
approximation, which leads to the conventional Orr-Sommerfeld theory. Thus 
the formal expansions we shall develop, in which the Orr-Sommerfeld equation 
will give the first approximation, will be proper for all flows in which Fz = O(R-3) 
as R --f co. These considerations were outlined previously by Lanchon & Eckhaus 
(1964). 

We want to construct a proper expansion of the linearized eigenvalue problem. 
For parallel flows the coefficients are also independent of x; hence (2.3) admits 
normal-mode solutions proportional to exp {iax), where a is the stream-wise 
wavenumber. Here we expect the same general behaviour, except that the wave- 
number a will vary slowly with x. Accordingly, in the spirit of the WKBJ method, 
we shall look for normal-mode solutions of the form? 

31" = $(t, Y) exp 6-1 exp {iwt>. (2.6) 

For weakly non-parallel flows, we expect that both $ and a should be weak 
functions of 6. This suggests an expansion of the form 

$ = $O(Y)+&(Y, 6 )  +o(e), 
a = a,+eal(5)+O(E), 
w = w,+sw,+o(e). 

( 2 . 7 ~ )  

(2.7b) 

( 2 . 7 ~ )  

Note that the non-parallel feature is expected to alter the eigenvalue w ,  even 
at the point E = 0, and E W ~  gives this first-order correction to the eigenvalue of 
the 'local' velocity profile arising from the non-parallel feature of the basic flow. 

Now, suppose some fixed point xo is chosen, and the non-parallel flow correc- 
tions are sought for a disturbance which at point xo ([ = 0) is periodic with 
wavenumber ao. In  this problem no correction to a at f [  = 0 would be imposed. 
Hence, al(0) = 0. Since the $ expansion to order e involves only the first power 
of t ,  it is sufficient to take 

Similarly, to O(s), $1 need only be linear in 5; hence 

a = a0+ea1~+o(e) .  (2.7 a) 

(2.7e) 

Higher order analyses would involve terms quadratic in t. 

and write 
t If we use the WKBJ method directly, as suggested by Benney & Rosenblat (1964), 

h 

u(z) = a,+ €&q+ ..., 
then u: = 201, and the analysis is unchanged. 
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With the expansion as formulated thus far, we can determine the modifica- 
tions ea,, ew, and E$, at fixed a, and R. If we wish to determine the resulting 
shift in the neutral stability curve, it is also convenient to expand R as 

1/R = b,+eb,+o(e). (2.7f 1 
For Blasius flow, the o(e) terms in the above equation are all O(Glne), rather 
thanO(e2). Then, b, is thereciprocal of the Reynoldsnumber a t  which disturbances 
of wavenumber a, are neutral in the parallel flow analysis. Knowledge of b, 
will permit calculation of the shift in the neutral Reynolds number produced by 
the non-parallel aspect of the basic flow. The wave speed c becomes 

When we substitute the expansions (2.7) into (2.3), solvability conditions will 
yield values for a,, and a linear relationship between w, and b,. If we set b, = 0,  we 
obtain w1 (complex); hence the alteration in the eigenvalue for disturbances of 
wavenumber a, a t  fixed R = l/bo. Alternatively, suppose we choose a, and b, 
such that wli = 0 (i.e. we select a point on the neutral stability curve). Then, if 
we require both b, and w1 to  be real, we can calculate them both, and so deduce 
the shift in the neutral Reynolds number for disturbances of wavenumber a,. 
In general, a, will emerge complex. Then ea,,c describes the change in wave- 
number as the disturbance moves downstream, and exp { - ealit} describes the 
downstream change in the disturbance amplitude. The distortion of the eigen- 
function a t  x, due to non-parallel effects is described by eglo(g), and the additional 
distortion as the disturbance moves downstream is indicated by e$,,(y) 5. 

With this preview of the direction of the analysis, we proceed with the details. 
Substituting (2.5)-(2.7) into (2.3)) and collecting terms of like orders of e and 
t, one obtains a sequentially solvable set of ordinary differential equations. For 
O(C0t0), 

where L = i { [ ~ ~ + c ~ ~ $ h ]  ( D 2 - ~ ~ ) - ~ o $ { } - b o ( D 2 - ~ ~ ) 2 ,  
L($,) = 0, (2.8) 

D = dlldy. 

This is the familiar Orr-Sommerfeld equation of parallel shear flow stability 
theory (Lin 1955). With homogeneous boundary conditions, (2.8) defines an 
eigenvalue problem for the eigenvalue w,. For O(elcl), 

L($,,) = -a,G+H, (2.9) 

where G = {2i[&(D2 - 3 4 )  - ${ - 2w0a,] + 8bo~, (D2 -a$)} go, 
H = -  iao[;i;;(D2- at) -;i;F;"] go. 

For O(s1to), L($lO) = - w,P - b,& +X, (2.10) 

where P = i(D2-a;) go, Q = - ( 0 2 -  .;I2 $0,  

8 = 2 w o ( ~ o $ ~ ~  + ~ 1 $ o )  -$h(D2-3a$) $11+ 6aoa1$~$o+$,D(D2--~) $0 

+ $[ $11 - pi 040 f 4ibo[a,(D2 - 3 4 )  $0 + ao(D2 - a;) $111. 
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The boundary conditions (2.4) yield 

f o  -+ 0, 

f o  = D f ,  = 0, 

flo -+ 0, fll --f 0, 

flo = D$lo = 0, 

moving outward in a uniform stream; (2.11 a) 

(2.11 b) 

In  problems where the eigensolutions are either symmetric or antisymmetric, 
(2.1 1 b)  is replaced by symmetry or antisymmetry conditions. 

To carry out the calculations, we must first solve the conventional eigenvalue 
problem posed by (2.8) and (2.11). This gives a point do, b,, w,, and the corre- 
sponding eigenfunction fo(y) about which the expansion is made. The associated 
adjoint eigenfunction @(y) will be useful. It satisfies the adjoint equation 
(Stuart 1960) 

$11 = Dfll = 0, at solid boundaries. 

9(@) = 0, (2.12) 

where 9 = i { [ ~ ~ + a o ~ ~ ]  ( D 2 - - ~ ) + 2 a O ~ ~ D } - b , ( 0 2 - a ~ ) Z ,  

and boundary conditions identical to (2.11). Moreover, the adjoint problem has 
the same eigenvalue. The boundary conditions on @ are 

(2.13 a )  

(2.13 b )  

In  problems where the eigensolutions are symmetric or antisymmetric about 
y = 0, (2.13b) is replaced by symmetry or antisymmetry conditions. Details of 
this computation are described in Ling & Reynolds (1971). 

CD -+ 0 moving outward in a uniform stream; 

@ = D@ = 0 on a solid boundary. 

2.1. Solvability condition 

The adjoint eigenfunction has several important properties. It is defined so 
that, iff and g are any two functions satisfying (2.11), 

(2.14) 

where 1 and 2 denote the boundaries of the flow. Suppose one is interested in 
solving an inhomogeneous equation of the form (e.g. (2.9) and (2.10)) 

L(h) = M ,  ( 2 . 1 5 ~ )  

with boundary conditions (2.11) on h, and L such that L ( f , )  = 0 (i.e. an eigen- 
solution exists). It follows from (2.14) that ( 2 . 1 5 ~ ~ )  cannot be solved unless 

[12 M @ d y  = 0. (2.15b) 

This is the solvability condition which will be invoked in the determination of 
al, w1 and b,. However, if (2.15b) holds, the solution to ( 2 . 1 5 ~ )  is not unique, for 
we may add to any solution h an arbitrary multiple of go to produce a new solu- 
tion of (2.15a). This will be discussed in Q 2.3. 

Since h can be expressed as the sum of a particular solution, a well-behaved 
homogeneous solution and a growing homogeneous solution, we have 

h = h23+al$og+wPo, (2.16) 
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where hp is the particular solution, Go the Orr-Sommerfeld eigensolution, and 
Qog a second solution to the homogeneous equation. a, can be found by applying 
the boundary condition, and u2 will be obtained by using an orthogonality con- 
dition to be described in $2.2.  

Suppose we have solved numerically the eigenvalue problem (2.8), determined 
wo for values of a. and b,, and tabulated the eigenfunction and its associated 
adjoint eigenfunction. Turning to the $,, problem (2.9), we see that the in- 
homogeneous terms on the right contain only known functions and the unknown 
parameter a,. A solution satisfying the boundary conditions is impossible unless 
the solvability condition (2.15b) is satisfied. Hence, we must take 

a1 = S12 H @  d y / j  1 G@ dy. (2.17) 

We can then compute numerically a solution to (2.9) satisfying the boundary 
conditions, and add to that solution a multiple of Go, to satisfy the orthogonality 
condition (to be discussed). 

With a, and $,, in hand, we turn to (2.10), and note that the inhomogeneous 
terms contain only known functions and the unknown constants w, and b,. The 
solvability condition requires that 

(2.18) 

OP Clwl+C2bl = C,. (2.19a) 

Now, if we wish the eigenvalue perturbation at fixed Reynolds number, we 
simply set b, = 0 and determine w, from (2.18). Alternatively, if we wish to 
determine the Reynolds number change required to hold wi fixed, we note that 
wli = bIi = 0; hence 

Cf 0, + C,* b, = Cz (2.19b) 

Equations (2.19) may be solved for w1 and b,. With these constants, we may pro- 
ceed to solve numerically for $lo, again adding a multiple of $, by using the 
orthogonality condition, and the problem is then completely solved to O(e). 
For details and examples of such calculations, see Ling & Reynolds (1971). 

2.2. Orthogonulity condition 

The solution of the inhomogeneous equation (2.15 a)  can be viewed as an expansion 
in terms of the eigenfunctions of L($,) = 0, taking the complete set of eigen- 
values win], 

h = c c[~I$~”I = C[OI$~OI + 5 ~ [ ~ I G L ~ I ,  

where $Ao] refers to the first eigenfunction. Based on arguments for the unique- 
ness of the solution (to be discussed), C[O] must be zero. Hence, 

00 

n=O n=l 

(2.20) 
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satisfy (2.8) with wo replaced by dnl, which may be 

(2.12 a )  

The eigenfunctions 
written as 

L($["l) = L,(gpl) + o~"lLz($"l) = 0, 

L, = i(D2 - a;). 
Also, 9(@) = 9,(@)+w,L,((D) = 0, (2.21b) 

where 9, is adjoint to Ll ,  Multiplying (2.21a) by 0, and (2.2lb) by $Jnl, 

integrating and subtracting, one finds 

f i"  ( D ( D ~  - a;) dy = o if w[fi l+ wo. 

Alternatively, integrating by parts, using the boundary conditions 

Hence, using (2.20), 

(2.22) 

This condition will be used to suppress go from gll and gl0, as the discussion 
following suggests is required. Details of this computation are described in 
Ling & Reynolds (1971). 

2.3. Uniqueness of solution 

The rationale behind the suppression of go from the higher order functions de- 
serves some comment. Suppose we add to gl1 a multiple A of go; then we could 
write the $-' expansion as 

Ilr' = [gO(l +ACE) + + @ l l ) ~  exp {i(ao E + €al 6 2 )  + iwt) + . . . . (2.23) 

To O ( E )  we could rewrite the f i s t  term, and obtain 

4' = [go + @,,) + o(E)]  exp {i[(ao - ieA) E +  €al gz + . . .] + iwt}. (2.24) 

In  this form we see that the term containing A has the same effect as a change 
in the wavenumber at E = 0. But it was our intent to examine the effect of non- 
parallelism on disturbances which at  xo have a given wavenumber ao. Hence, 
we should prevent any additional perturbations in wavenumber from creeping 
in at  = 0, which requires that we choose A = 0. 

The function $lo might also contain an arbitrary multiple of go. Suppose we 
add I?$, to gl0, then the expansion could be written as 

*' = [go( 1 + EB) + &o + E$ll) + ... I exp {iM + ot)}, (2.25) 

and the term containing B has the same effect as a change in amplitude of the 
basic eigenfunction go. Since in this linear problem the amplitude is arbitrary, 
we may set B = 0 without loss of generality. 

The choice of E and q1 in (2.5) may seem arbitrary. Study of (2.9) and (2.10) 
shows that the products €al and BW, are independent of the portion of the constant 

37 F L Y  
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multiplying 6 in (2.5) that is assigned to e; hence the results of the analysis are 
independent of this arbitrary choice. One should note that the first approxima- 
tion is indeed provided by (2.8), the Orr-Sommerfeld equation as normally 
used in quasi-parallel analysis (Lanchon & Eckhaus 1964). 

3. Numerical procedure 
The numerical procedure for integration of (2.8)-(2.10) and (2.12) is patterned 

on that described by Reynolds & Potter (1967) and Reynolds (1969). The 
solution is carried out numerically using a fourth-order linear algorithm with 
Kaplan atering (Lee & Reynolds 1967). Starting at the outer edge of the shear 
layer, two homogeneous solutions are first constructed numerically for the 
adjoint problem (2.12) with specified a, and trial values of c, and R. These both 
satisfy the boundary conditions far from the shear layer (2.13a). Kaplan’s 
filtering technique produces two linearly independent solutions, to  which we 
refer as the ‘well-behaved’ and the ‘growing’ solution. The boundary con- 
ditions at the end of the integration range are, alternatively (see 2.13b), 

or 

or 

@ = D@ = 0 for a solid wall, ( 3 . l a )  

D@ = D3Q = 0 on an axis of symmetry in @, (3.1 b) 
@ = Dz@ = 0 on an axis of antisymmetry in a. ( 3 . 1 ~ )  

To satisfy the two conditions, a linear combination of the two solutions is formed 
that satisfies the second of the two conditions, and the first is satisfied auto- 
matically for eigensolutions. An iteration scheme is used to vary both c, and R, 
until the first boundary condition is satisfied, and then @ is the desired eigen- 
solution. With the eigenvalue in hand, we next solve (2.8) in the same manner; 
the growing solution of (2.8) is stored for subsequent use in the solution of the 
inhomogeneous equations. 

After a1 has been obtained from (2.17) using numerical integration, (2.9) is 
integrated by using a proper starting solution, and the same procedure used 
for solving (2.8) and (2.12). We compute a well-behaved particular solution, and 
form the final solution by adding an appropriate multiple of the growing homo- 
geneous solution previously computed. To determine this multiple, the second 
boundary condition of (3.1) is again employed, and the first is automatically 
satisfied if (2.17) is satisfied. Then, (2.22) is used to suppress $,. Equation (2.18) 
is then used to determine wl .  These procedures introduce the proper amount of 
both into the final solution. Then (2.10) is solved by the same procedure. 

4. Results and discussion 
4.1. Blasius flozu 

For the Blasius boundary layer (Schlichting 1968, p. 125), the dimensional 
stream function is - 

$* = ( v ~ ~ m P f ( r ) ,  (4.1) 

where 7 = y(U,/W+, (4.2) 
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and f(7) is given by the solution of 

2f”+f’f” = 0, f(0) = 0, f’(0) = 0, f ” ( 0 )  = 0.33206. (4.3) 

f and its derivatives, and therefore the stream functions and their derivatives, 
can be found easily by solving (4.3) numerically. 

Using the leading-edge expansion of Van Dyke (1 964), and expanding about x,, 
one has 

where 

and f32 is a function defined by Van Dyke. 

velocity u, = U,, and introducing 
Normalizing with a characteristic length 8, = 

(4.5) 

(VX,/U,)& and a characteristic 

R = u.,6,/v = ( Z 0 U , / V ) ~ ,  (4.6) 

the dimensionless stream function becomes (compare (2.5))  

- 1 
@ =f(V +z{*[f(Y)- Y f ’ ( Y ) I ~ ~ + o ( ~ / ~ ) .  (4.7) 

Hence, in (2.5) we may take 
- 
@O(Y) = f ( Y ) ,  (4.8) 

Fl( Y )  = t [ f (Y) - Yf ’( Y)I> (4.9) 
E = 11R. (4.10) 

The neutral Reynolds number for a given a, is (see (2.7f)) 

with 

RN = I / ( b , + E b , + O ( E ) )  = 

bl Rl = -- 1 R, = - 
bg’ b,’ 

1 
RN = Ro + ER, + O ( E )  = R + - R, +.(.).I 

O Ro 

(4.11) 

The sequence of problems (2.12), (2.8)-(2.10) was solved using $, and P1, 
as given above. Table 1 gives the computational results. Figures 2-5 show the 
functions @, $,, Gl1, $lo for a, = 0.172 and R, = 302.4; and figure 6 shows the 
streamwise growth of disturbance for the same a, and R,. The calculations show 
that R, < 0 at  the critical R,, indicating a reduction in the critical Reynolds 
number due to the non-parallel flow effect. However, the change in critical 
Reynolds number is very small (about 0.1 yo), and we conclude that the parallel 
flow model does a remarkably good job (figure 1). Since alp < 0, the wavenumber 
will shrink slightly in the downstream direction (i.e. the wavelength will grow). 
At the critical point a, < 0, which means that a disturbance which is marginally 
stable in time will show a slight downstream amplification (figure 6). 

37-2 
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R 

FIGURE 1. Neutral stability curves for Blasius flow: -, parallel flow; 
---_ , non-parallel flow. 

1 

CD 

0 

Y 

FIGURE 2. Adjoint eigenfunction @ for Blasius flow at a = 0,172, R,  = 302.4. 

0.6 

0.4 

$, 0.2 

0 

A 

FIGURE 3. Eigenfunction 11r0 for Blasius flow at a = 0.172, R, = 302.4. 
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I 1 ' J/--, J 2  4 6 8 10 
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A 

FIGURE 4. @ll for Blasius flow at  a,, = 0.172, R, = 302.4. 

- l L  
A 

FIGURE 5. @lo for Blasius flow at a, = 0.172, R,  = 3 0 2 4  

+1 

0 

-1 

FIUWRE 6. Streamwise growth of disturbance for Blasius flow a t  a, = 0.072, R, = 302.4: 
-, Re(exp{iol,[}); ---- , Re (exp {iaE>). 
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4.2.  Two-dimensional laminar jet 

For the two-dimensional laminar jet (Schlichting 1968, p. 170), the dimensional 

$* = 2yv*z*F(q), (4 .12)  stream function is 

where y is a constant related to the jet momentum, and 

- 

q=- ” F(7) = tanhq. 
3y3x+’ 

Again we should note that (4 .12)  is based on the boundary-layer equations, 
which break down at  low Reynolds number. 

Expanding about x,, one gets 

2Y - 
$* = 2 y v g ~ ~ F ( q o ) + 3 ~ + ~ ~ ) [ F ( q o ) - 2 q 0 F ’ ( q o ) ]  ( X - x O )  + ..., (4 .13)  

where 

Normalizing with a characteristic length 8, = 3v tx t / y ,  and a characteristic 
velocity u,. = h,, = 2r2/(3xh),  the dimensionless stream function becomes 

$ = F (  Y )  + ( 2 / R ) [ F (  Y )  - ZYF’]  c+O(1/R2), (4 .14)  
- 

where R = u,S,,/V. 
Hence, in (2 .5 )  we may take 

- 
$,( Y )  = F (  Y )  = tanh Y ,  
&( Y )  = 2F( Y )  - 4 Y F ’ (  Y ) ,  

(4 .15)  

(4.16) 

E = I / R .  (4.17) 

Solutions were obtained for disturbances symmetric about the centre-line by 
methods in $3,  Tables 2 and 3 give the computational results. Figure 7 shows 
the non-parallel effect on the neutral stability curve. Figure 12 shows the stream- 
wise growth of disturbance for the same a, and R,. 

Note that, at  the critical point on the parallel flow neutral curve, R, is negative, 
indicating again the destabilizing effect of the non-parallel flow. However, be- 
cause R, is low here (compared with the Blasius case), e is not particularly small, 
and the analysis to O(B) is not sufficient to determine the shift in the critical 
Reynolds number (see figure 7). For such low Reynolds number flows, the use 
of the basic flow as given by the boundary-layer equations seems dubious a t  
best. Nevertheless, it is quite clear that the non-parallel flow reduces the critical 
Reynolds number. The curves of figure 8 were drawn for an a for which the O(s)  
analysis is probably adequate. At this point a,, < 0, again indicating a lengthen- 
ing of the wavelength of a neutral disturbance in the flow direction. At this 
point ali > 0, suggesting a streamwise reduction in the amplitude of a marginally 
stable disturbance. Figures 9 and I0 show the wave speeds and growth rates 
for the parallel flow and non-parallel flow models at  R M 29 and R M 84.  Note 
that the correction is quite small a t  these Reynolds numbers, and smaller at  
the higher Reynolds numbers. The non-parallel flow effect is most pronounced at  
low wavenumber, as expected. 
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C.-H. Ling and W .  C. Reynolds 

I I 1 I I 1  I l l  I I I I 1 I I l l  

FIGURE 8. Streamwise disturbance behaviour for the two-dimensional laminar jet at  
a,, = 0.75, Ro = 8.21: __ , R e  (exp {iao[}) ; - - -- , Re (exp {iaO). 

KO & Lessen (1969) made an ad hoc correction for the non-parallel effect on 
laminar jet stability; their results do not agree with our formal expansion analysis. 
I n  essence, they found aIt > 0, which is not always the case (tables 2 and 3); in 
addition, the trends in alz with Reynolds number suggested by KO & Lessen 
are not supported by the present theory. 

4.3. Two-d irnensional $at -plate wake 

For the two-dimensional flat-plate wake (Schlichting 1968, p. 166), the dimen- 
sional velocity in the x direction is 

(4.18) 
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0.4 - 

I 
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FIGURE 9 

0.4 
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“0 

FIGURE 10 

FIGURE 9. Wave speed and its correction for the two-dimensionallaminar jet atR, = 28.2: 
-, parallel flow; ----, non-parallel flow. 
FIGURE 10. Wavespeedanditscorrection for the two-dimensional laminar jet at R,, = 83.9: 
--, parallel flow ; - - - - , non-parallel flow. 

where E is the length of the plate, and 

So the dimensional stream function is 

(4.19) 

where 

This is of course correct only asymptotically, far downstream from the plate, 
as (xU, /v )+  -+ CQ: 

F ( r )  = j s(z) 0%. 
0 

where 

Normalizing with a characteristic length 8, = (YX,,/U,)B and a characteristic 
velocity u, = O.664Urn(xO/1)-t/&r, the dimensionless stream function becomes 

- 
$o does not appear in (2.12), (2.8)-(2.10), and the only place where the first 
term shows up is in (wo + a0&) of the Orr-Sommerfeld operator L. But 
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FIGURE 11. Neutral stability curves for the flat-plate wake. Non-parallel flow corrections: 
0, 0 . 6 6 4 ~  ( T X ~ / Z ) - ~  = 2 ;  0, 1; A, 0.5. 

0 

-1 - 

FIGURE 12. Streamwise disturbance behaviour for the flat-plate wake a t  a. = 0.1, R, = 2.26. 
-, Re(exp{ia,C}); ---- , Re (exp {iaEH. 

Hence we replace oo by (wo + .Jn(x,/Z)+ a0/0.664) in the Orr-Sommerfeld operator. 
Using this operator provides us with EL parameter-free basic flow field, which is 
a decided convenience. Then in (2.5) we take 

- 
$o( Y )  = - F (  Y ) ,  
- 
$A(Y) = - g ( Y )  = -exp(-$Yz), 

$I( Y )  = if Yg( Y )  - $o", 
(4.21) 

(4.22) 
- 

0.664 
(4.23) 

where R = u,S,./V. 
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Solutions were obtained for symmetric eigenfunctions. Table 4 gives the com- 
putational results for two-dimensional flat-plate wake. Figure 12 shows the 
streamwise growth of disturbance for a, = 0.1 and R, = 2.26. 

Figure 11 shows the neutral stability curve with the first-order non-parallel 
correction in comparison with the parallel flow theory. Curves were plotted for 
different values of xo/Z. The non-parallel correction is most significant at low 
values of a,. The results suggest that the non-parallel flow effects render the 
flow unstable to long wavelength disturbances at  low Reynolds numbers. The 
problem of the validity of the mean flow obtained from the boundary layer 
equation at low R should of course be remembered. At a = 0.1 and R = 2.26, 
a, < 0, and hence the disturbance wavelength will increase slightly in the down- 
stream direction. Also, a,( > 0, hence the neutral critical disturbance will show 
a slight decrease in amplitude in the downstream direction. Figure 12 shows this 
behaviour. Note from table 4 that somewhat different behaviour is predicted 
for disturbances on the upper and lower branches of the neutral stability curve. 

5. Conclusion 
A theory for non-parallel effects was developed formally, and applied in detail 

for three different laminar flows. In  the case of the Blasius flow, the neutral 
stability curve remained almost unchanged by the non-parallel correction. For 
a two-dimensional laminar jet or a two-dimensional Iaminar flat-plate wake, 
the flow apparently became unstable at  low Reynolds number, owing to the non- 
parallel effects. The non-parallel effects were not very significant at high Reynolds 
numbers. 

Prof. Martin Landahl provided a helpful review of the manuscript, and sug- 
gested that we look a t  the WKBJ method as an alternative approach (see the 
footnote to the paragraph containing (2.6)). This work was supported by the 
National Science Foundation and by the Mechanics Branch of the Air Force 
Office of Scientific Research. 
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